
Context Variability

Dr. Rafael Capilla

rafael.capilla@urjc.es

• The challege for open variability models
• Adaptation and Context
• Programming techniques
• Case study

Part I

Open Variability

What products you want to develop and how ?

Android’s features

• Messaging
• Auto Correction and Dictionary
• Voice-based features
• Multi-touch
• Screen capture
• Video calling
• Multiple language support
• NFC
• Media support
• Etc…

Open Variability

• Different kind of features (e.g., mandatory, alternative, optional, external,
etc.) define the visible properties of systems, from the “required variability”
to the “provided variability”

“Required variability” “Provided variability”

Notation
makes provided

variability explicit

Open Variability

• In most the cases the provided variability cannot be changed
once the variability model is designed and the variability is
implemented

• New customer’s needs often demand new features
(differentiating features)

• New features often imply a redesign of the variability model
(human and manual activity)

• Feature models are often closed to evolution

Open Variability

• Support for new features requires “extensibility ” of
existing feature models

• Open variability models are those prepared for the
evolution for handling new customer features and
preferably with minimal human intervention in the
redesign task

• Open variability models are closer to variability
managed at post-deployment time

Open Variability

• In most the cases the provided variability cannot be changed
once the variability model is designed and the variability is
implemented

Payment Options (Credit Card, PayPal)
Stripe payment platform (add new feature)

Option 1: Add the option manually and redesign the VP
Option 2: Add the feature automatically as a new value
Option 3: Implement a mechanism to add a feature dynamically

Open Variability

• Differentiating functionality (challenges)
– Provide open variability models
– The Product Line Architecture should be extensible
– Support to unticipated requirements
– Runtime facilities to manage feature updates
– Innovative functionality to highlight our products from competitors

Part II

Adaptation and Context

Context-aware systems we want/need to build

A combination of variability and awareness

Context-aware
Self-adaptive

Smart

SYSTEMS

Sensory
Variability in unforseen
scenarios

ADAPTATION

Contexts

Adaptation in Modern Systems Development

• Adaptation is a property where systems interacting with the
environment >>>>>>>> have the ability to react (smartly)

• Self-adaptation enhances the capability of adaptive systems
to perform autonomously a change in their behavior

Mobile software offers highly configurable devices and
system’s options in the customer side

The robotics area needs of strong self-adaptive capabilities
limited by tiny memory models that may hamper software
updates during robot’s execution

Autonomous Drones require unattended landing and take off

Challenges & Goals

Challenge 1: Support awareness and context
knowledge

Challenge 2: Changes in the structural variability
supporting context properties (Runtime Evolution)

Challenge 3: Handle unmanaged (but supervised)
changes

Awareness & Self-
adaptation &

Reconfiguration

Dynamic SPL &
Runtime Variability

Software
Variability

Context-aware systems & Context variability modeling

• Awareness as a combination of knowledge + monitoring

• Advanced capabilities for monitoring, managing, and reacting
to new context conditions, sometimes in unttended mode, are
necessary

• Adaptation of systems should become…

• Smart Reaction, Autonomous, Reconfigurable,
• All in one ….Better self-adaptable

Context-aware systems & Context variability modeling

A variety of Systems-of-Systems and mission critical systems
(e.g., industrial automation, airport mgmt, systems, robots,
smart cities) use context information gathered from physical
sensors

Advanced capabilities should include (among others)
“adding/removal/replacement” of CONTEXT FEATURES

E.g., A Smart City Mgmt. System could add dynamically and
(semi-)automatically a new functionality (… but supervised)

Context Variability Modeling

• Context properties for autonomous decision-making
• Variable options for multiple and optimal decisions
• Manage “unpredictable” scenarios

Sensory
Data

Context Properties

Modified
Behavior

Context Variability Dynamic Variability

DSPL: Context Analysis

• Identify “context features” + “non-context
features”

• Context features are used to model and manage
the “awareness” property of context-aware
systems

• Context Variability is understood as a branch
of Feature Modeling where “context properties ”
are modeled jointly or separately with non-
context features

Context feature modeling strategies

Context features
are annotated in

the FM and
Database

Features that
change

dynamically can
be annotated too

Strategy A Strategy B

Context features and feature modeling

Context Features

Continent Car brandType

USA
Asia

A B C
Budget

Maps Interface

USA Asia EU<<excludes>>

<<requires>>

USB

<<sets cardinality>>

Example: the DVD systems for European cars Region 1 [Hartmann et al, SPLC’08]
Continent.Europe <<requires>>
European Maps {Rationale:obviuos}
Continent.Europe <<requires>> DVD Region 1 {Rationale:standard}

Dynamic (Runtime) Variability

Runtime or dynamic variability offers a good choice for
systems that experience dynamic changes in their quality and
context

• Design time variability is (often) hidded to the user and
managed by the product’s developer,

• Dynamic variability is an open model managed in the
customer side

Required
variability

Provided
variability

Non-predicted
variability

Requirements
Features

Design
Implementation
Configuration

Runtime

Required
variability

Provided
variability

Non-predicted
variability

Requirements
Features

Design
Implementation
Configuration

Runtime

Dynamic Variability: Runtime Challenges

Activating and deactivating system’s options is not enoug h
• Modify the structural variability at runtime
• Automate runtime validation and checking (new

constraints!!!)
• Automatic (re)deployment and (re)binding of system

configuration with minimal interruption

Dynamic Variability in Robotic Systems (replacing a full branch)

Robot
Navigation

Motion
Behavior

Smoot
h

Reactive

Map-based
Navigation

Geom. Path
localizer

Geom. Path
planner

RRT Quad
Tree

ACML SLAM

Navigtion Strategy
feature tree subsytem

Rover
Kinematics

Omnidirectional
Differential

drive

Marker Path
planner

Market
locator

Graph
planner

Tree
planner

Marker-based
Navigation

Dynamic
replacement

Part III

Programming Techniques

Implementation techniques

• Delegation : Support optional features
• Design patterns : Decouple variability
• Context-oriented programming (COP):

functionality is activated using layers
• Dynamic link libraries/classes : in support of

configurable options at runtime and actívate
options dynamically

Delegation

• A functionality is delegated (performed) in another component or
function

• Delegation is suitable to implement optional features but has
problems with alternative features

Example: Object A implements the functions A1, A2 and A3. A1 is
mandatory for all product line members while A2 is optional and
supported only by extended products. A3 is alternative meaning that
an extended product provides an extended implementation of A3

Delegation requires that all methods be defined .A1 is implemented
in all products. A2 is defined in all products but is really implemented
only in the extended versions. A3 is defined in all products and
implemented differently in different versions.
When A2 is invoked in the standard version an exception could be
raised. The developer of the extended version could then implement
A2 in a delegation class.

Delegation

public void A2() {
delegationObject.A2();

}

Delegation with alternative features
public void A3() {

/* standard code */
foo1();
foo2();

/* here comes an optional part that gets delegated */
delegationObject1.foo3();

}
(Implementing product lines variabilities, Anastopoulos and Gacek)

Design Patterns

• Variability is often scattered using parameters and code is
undisciplined

• DPs have evolved to decouple variability and where classes
collaborate together

• Examples of patterns: Strategy, Decorator, Observer, Template-
method, etc.

• E.g. The Strategy pattern is suitable to implement alternative
features with different implementations

Design Patterns

• Strategy pattern: typically used to implement alternative features
(e.g. variability in algorithms). It’s a behavioral pattern that uses
delegation and where developers specify different strategies of
use.

Design Patterns

• Implementation of the Strategy pattern

interface BillingStrategy {
// Use a price in cents to avoid floating point round-off error int
getActPrice(int rawPrice);

// Normal billing strategy (unchanged price)
static BillingStrategy normalStrategy() {

return rawPrice -> rawPrice; }

// Strategy for Happy hour (50% discount)
static BillingStrategy happyHourStrategy() {
return rawPrice -> rawPrice / 2; } }

Context Oriented Programming Languages (COP)

• COP languages are an alternative to model “contexts” that
can be activated dynamically

• A variety of COP languages exist (JCOP, ContextLua,
EventCJ, Subjective-C, ContextJS)

• Context dependent behavior and variations

• Layered and non-layered COP languages (layers vs contexts)
– Layer-based : contexts are identified as layers that are activated with

respect to context changes
– Non-layer : contexts are reified as an object used in the method

invocation. Context behavior is not modularized using layers

COP

• COP are research languages that use the notion of
layers to activate a functionality dynamically

• It’s a programming technique that supports context-
dependent behavioral variations

• Layers are first-class entities that can be invoked at
runtime

• Suitable for context-awareness systems
• Examples of COP: ContextL, ContextJ, ContextS,

Subjective-C, JCOP, PyContext, ContextJS, etc.

Example with COP

• Context-traits.js
var cop = require(’context-traits’);
var Untrusted = new cop.Context();
var LowBattery = new cop.Context({

name: ’low battery’,
description: ’The remaining battery charge is low.’});

window.addEventListener(’batterystatus’,
function (info) {
if (info.level <= 30) LowBattery.activate();
else LowBattery.deactivate(); })

Context creation

Context detection

Subjective-C

UILabel class
drawTextInRect:

Draws the receiver’s text in the specified rectangle.

- (void)drawTextInRect:(CGRect)rect

Parameters
rect

The rectangle in which to draw the text.

Discussion

You should not call this method directly. This method should only be
overridden by subclasses that want to modify the default drawing
behavior for the label’s text.

Availability

Available in iOS 2.0 and later.

Declared In
UILabel.h

3

5Example with COP

Subjective-C

3

6

@implementation UILabel (color)

@context(Landscape)

- (void)drawTextInRect:(CGRect)rect {

self.textColor = [UIColor greenColor];

[superContext drawTextInRect:rect];

}

@end

Open classes
Objective-C

COP
Subjective-C

✓ Adaptation of any existing component
✓ No access to original source code needed
✓ Adaptations can be cleanly modularized

Application
Behaviour

Example with COP

Subjective-C

3

7

if motion.isGyroAvailable {

self.motion.gyroUpdateInterval = 1.0 / 60.0

self.motion.startGyroUpdates()

self.timer = Timer(fire: Date(), interval: (1.0/60.0),

repeats: true, block: { (timer) in

// Get the gyro data.

if let data = self.motion.gyroData {

let x = data.rotationRate.x

let y = data.rotationRate.y

let z = data.rotationRate.z

if(getDegrees(y) > 270 && getDegrees(y) < 360) {

@activate(Landscape)

} else { @deactivate(Landscape) }

}

})

// Add the timer to the current run loop.

RunLoop.current.add(self.timer!, forMode: .defaultRunLoopMode)

}

@end

Example with COP

Dynamic Link Libraries/Classes

• At runtime a DLL containing libraries or classes can be invoked to include
new variants

• Dynamic files can be uploaded in support of a new system’s configuration
• Features and configurations can be replaced dynamically
Example: the OSGi platform uses bundles (a group of Java classes) can be
remotely installed, started, stopped, updated, and uninstalled without
stopping the system.

Dynamic Link Libraries/Classes

• Dynamic loading in Unix (Dlsym)

void* sdl_library = dlopen ("libSDL.so", RTLD_LAZY);
if (sdl_library == NULL)
{ // report error ... }
else
{ // use the result in a call to dlsym }

• JavaScript
//dynamically load and remove"javascript.php" as a JavaScript file
loadjscssfile ("javascript.php", "js")
removejscssfile("somescript.js", "js")

Part IV

Wind farm case study

Wind farm case study

• NORDEX is a German company and partner of
Acciona (Spain)

• NORDEX develops and deploy Wind power using
Wind Turbines in different countries

• NORDEX is one of the largest
manufacturers of wind turbines

• It counts with at least 3 series of wind turbines
encopassing different models and configurations

• Turbines are customized to each customer’s need
(from Africa to Finland)

Wind farm case study

• We have an ongoing collaboration between
NORDEX-URJC-University of Hamburg

• Several changes and configurations on an already
existing system

• Specific conditions depending on the countries being
deployed with a lot of specifications and fluctuations
of the wind turbines

• Around 130 base configurations and the number of
grid codes are at least 100

• One variant for every country

Wind farm case study

• Variability at NORDEX
• 3 different tower variants (not software)
• Advanced anti-icing system
• Climate operating range
• Power consumption modes
• Condition monitoring system
• Sound reduction from the rotors
• Grid codes
• Country specifications
• 130 base configurations

Wind farm case study

• Challenges:
• Software adaptations for every project (lot of effort to be

coded and tested)
• Lot of variants for grid codes that must be satisfied and

configure the windfarm controllers more automatically
• The code is not standardized for different countries and

effort for different controllers and signals to the wind
turbines

• Specific conditions depending on the countries being
deployed with a lot of specifications and fluctuations of the
wind turbines

Wind farm case study

• Goals:
• Adapt the software by reconfiguration and not writing new

code and reduce the engineering effort
• The most important features is to control the algorithms

• Solutions (R+D)
• Develop a new method to identify and model context

features
• Improve the reconfiguration processes to provide

automatic support (dynamic variability)
• Reduce the engineering and configuration effort via the two

previous solutions

Further reading

• Two contemporary books (2013)

